Skip to main content

课程表

题目

你这个学期必须选修 numCourses 门课程, 记为 0numCourses - 1.

在选修某些课程之前需要一些先修课程. 先修课程按数组 prerequisites 给出, 其中 prerequisites[i] = [aᵢ, bᵢ], 表示如果要学习课程 aᵢ必须先学习课程 bᵢ.

  • 例如, 先修课程对 [0, 1] 表示: 想要学习课程 0, 你需要先完成课程 1.

请你判断是否可能完成所有课程的学习? 如果可以, 返回 true; 否则, 返回 false.

提示:
  • 1 <= numCourses <= 2000
  • 0 <= prerequisites.length <= 5000
  • prerequisites[i].length == 2
  • 0 <= aᵢ, bᵢ < numCourses
  • prerequisites[i] 中的所有课程对互不相同
示例
输入: numCourses = 2, prerequisites = [[1,0]]
输出: true
解释: 总共有 2 门课程. 学习课程 1 之前, 你需要完成课程 0. 这是可能的.
输入: numCourses = 2, prerequisites = [[1,0],[0,1]]
输出: false
解释: 总共有 2 门课程. 学习课程 1 之前, 你需要先完成​课程 0; 并且学习课程 0 之前, 你还应先完成课程 1. 这是不可能的.

题解

这道题本质上是一个有向图环检测问题.

  • 课程可以看作图中的节点.
  • 课程之间的依赖关系可以看作图中的有向边.
/**
* @param {number} numCourses
* @param {number[][]} prerequisites
* @return {boolean}
*/
var canFinish = function (numCourses, prerequisites) {
const graph = Array(numCourses)
.fill(null)
.map(() => [])
const inDegree = Array(numCourses).fill(0)

// 构建邻接表
for (const [course, pre] of prerequisites) {
graph[pre].push(course)
inDegree[course]++
}

const queue = []

// 将入度为 0 的课程加入队列
for (let i = 0; i < numCourses; i++) {
if (inDegree[i] === 0) {
queue.push(i)
}
}

let count = 0

// 拓扑排序
while (queue.length > 0) {
const course = queue.shift()!
count++

for (const nextCourse of graph[course]) {
inDegree[nextCourse]--
if (inDegree[nextCourse] === 0) {
queue.push(nextCourse)
}
}
}

return count === numCourses
}
  • 时间复杂度: O(V + E), 其中 V 是课程数量, E 是依赖关系数量.
  • 空间复杂度: O(V), 用于存储邻接表和访问标记数组.